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Introduction

• Silent segments

• Breath noises

▪ Inhalations

▪ Exhalations

• Filler particles

▪ „äh“ and „ähm“ in German

▪ „uh“ and „uhm“ in English

• Tongue clicks
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PINTs TTS

• Silent segments improve digit recollection (Elmers et 
al. 2021a)

• Breath noises improve sentence recollection (Elmers 
et al. 2021b)

• Filler particles improve TTS by reducing cognitive 
load for listener (Dall et al. 2016)

• Quality of training data is important for TTS 
applications (Henter et al. 2016)
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Silent Segment
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Breath Noises
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Filler Particles
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Clicks
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Co-Occurrence
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Co-Occurrence

• Modeling multiple PINTs improved classification 
accuracy of surrounding non-verbal vocalizations 
(Condron et al. 2021)

• PINTs are usually:

▪ Condensed to “other” class

▪ Ignored altogether
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Aim

• Implement state-of-the-art methods for detecting 
PINTs

• Classification of PINTs in German

• Classify PINTs using three models:

▪ General neural network (NN)

▪ Convolutional neural network (CNN)

▪ Recurrent neural network (RNN)

• Hypotheses:

▪ RNN will outperform other models 

▪ Simultaneous modeling improves PINTs classification
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Methods

• Corpus Information:

▪ Pool Corpus (Jessen et al. 2005)

▪ 100 males (21-63 years old; mean age 39 years old)

▪ Native speakers of German

▪ Spontaneous speech task (i.e. picture description task)

▪ Similar to board game Taboo
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Methods

• Annotations:

▪ 100 files (124-374 s; mean dur 223 s; total dur 6.2 hours)

▪ Sampled at 16 kHz

▪ 17,641 annotated PINTs
• Silent segments, inhalations, exhalations, two types of filler 

particles („uh“ and „uhm“), and clicks

▪ Other PINTs and disfluencies were excluded due to their 
infrequent occurrence 
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Methods

• Annotated PINTs overview

▪ Min, max, mean, and sd measured in seconds

▪ Total measured in minutes
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Methods

• Data pre-processing:

▪ 13 mel-frequency cepstral coefficients (MFCCs)

▪ Frame size 93 ms

▪ Hop length 23 ms

▪ Zero-padding
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Methods

• Data pre-processing:

▪ Models trained on nine classes
• Silent segments

• Inhalation

• Exhalation

• Two FPs (“uh” and “uhm”)

• Clicks

• Speech

• Task change

• Zero-padding
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Methods

• Model Information:

▪ Same hyperparameters

▪ Similar number of layers

▪ Same number of neurons for those layers

▪ Sparse categorical cross entropy loss function

▪ Learning rate of 0.0001

▪ Adam optimizer 

▪ Batch size of 32

▪ Trained for 40 epochs
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Methods – Neural Network
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Methods – Convolutional Neural 
Network
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Methods – Recurrent Neural Network
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Results
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Results

N
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Conclusions

• All models performed similarly

• Hypotheses:

▪ 1) RNN should perform best since it considers temporal 
information
• RNN did not perform much better than NN or CNN
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Conclusions

• Hypotheses:

▪ 2) Simultaneous modeling can improve classification 
accuracy of surrounding PINTs
• Simultaneous modeling didn‘t improve accuracy for surrounding 

PINTs

• All models unable to classify FPs and clicks

• FPs too close to speech category

• Clicks often misclassified as silent segments

– short duration 

– drawback of only using MFCCs as input
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Conclusions

• Model classified:

▪ Silent segments very well

▪ Inhalations well

▪ Exhalations with middling success

• Accurate PINTs classification dependent on:

▪ Annotation quality

▪ Annotation quantity 

▪ Models started with high accuracy and improved minimally
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Conclusions

• Improvement to PINTs detection:

▪ Increase number of occurrences

▪ Especially for infrequent PINTs

• Future work

▪ Investigate other acoustic features

▪ Train using spectrogram images

▪ Implement PINTs classification into TTS pipeline
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PINTS Website

Thank you!

http://pauseparticles.org/
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Conclusions

• Model classified:

▪ Silent segments very well

▪ Inhalations well

▪ Exhalations with middling success

• Accurate PINTs classification dependent on:

▪ Annotation quality

▪ Annotation quantity 

▪ Models started with high accuracy and improved minimally


