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Abstract: Breathing is central to speech planning and production; however, speech
breathing is difficult to monitor and quantify without laborious and subjective man-
ual annotation. Here, we describe a method for automatically detecting the begin-
ning and end time points of speech-associated inhalations measured with inductive
plethysmography, or breath belts. Unlike simpler approaches to breath detection,
the technique introduced here employs slope analysis to improve temporal preci-
sion. First, inhalation events are identified by searching for roughly continuous,
positive sloping segments. Inhalations are then rejected or modified based on slope
height, duration, and grade, as well as contextual factors, such as the height or dura-
tion of neighbouring breaths. Finally, the respiratory time series can be optionally
corroborated with acoustic recordings to further improve results. This approach
is validated by two independent annotators using spontaneous and read English
speech contributed by 10 individual speakers, including relatively noisy data. From
a signal detection perspective, we estimate performance at 95% on average. The
mean median error of detected breaths, when compared to human annotation, is
22.50 ms (IQR 37.71 ms). By comparison, a peak-finding method without acous-
tic calibration yields 91% accuracy with substantially larger errors (mean median
167.90 ms, IQR 381.45 ms). In conclusion, the proposed automatic method pro-
vides robust and temporally accurate annotation of the speech breathing time series.

1 Introduction

Fine respiratory control is foundational to speech production, and has been investigated across
fields ranging from development [1], to disorder and disease such as Parkinson’s [2]. Efforts
to scientifically describe speech breathing date as early as the 1930s, with [3], for example,
visually comparing the respiratory patterns of an adult male with a stammer to those of a neu-
rotypical control. A common means to monitor speech breathing is to record torso displacement
via respiratory inductance plethysmography [4]. This technique produces a linear signal with
characteristic peaks corresponding to individual inhalations (Figure 1). At rest, the breathing
signal resembles a quasi-sinusoidal profile, the phase of which can be reasonably estimated
using basic signal processing techniques. In the context of speech, however, its quantification
presents a special challenge: The signal is noisy, irregular, and prone to inter-individual idiosyn-
crasy. Hence, the automatic detection of speech-related inhalation requires a more specialised
approach, especially for research areas where accurate timing is important, including prosody
or conversational turn-taking. Here, we describe and evaluate a method to automatically anno-
tate the speech breathing signal with the goal of maximising temporal precision and robustness
to noise.
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1.1 Automatic Approaches to Speech Breathing Detection

There are many approaches to the annotation of speech breathing in the literature, with most
of them demanding considerable human judgement and labour. Some authors detect inhalation
loci based on listening [5], and manual annotation of plethysmography is also possible [6].
Otherwise, there have been attempts to automatically identify the speech breathing time series:
One proposal is to take the zero-crossings of the acceleration of the respiratory signal within
an appropriate bandwidth (e.g., 0.05 Hz − 10 Hz) [7]. Another is to find the locations of
values equivalent to 10% of the value of the velocity peak before and after the peak [8, 9].
Such procedures are appealingly simple, but the researcher is forced to either proceed with
the understanding that many observations will likely be artefacts; or, invest time in manually
inspecting and adjusting the breathing time series where needed. [10], for example, took a
peak-finding algorithmic approach, but report that "about 100 [exhalations] have positive slopes
[...] most likely caused by an error in the automatic segmentation of respiratory cycles which
skipped over an inhalation". In sum, these automated techniques depend on levels of simplicity
and stability typically missing from natural speech breathing data.

1.2 The Proposed Method

To save time, improve accuracy, and enhance reproducability, we introduce a new set of speech
breathing-specific functions, the SpeechBreathingToolbox1, developed in MATLAB [11].
The development of this toolbox was based on extensive visual inspection of breath belt data
corroborated using the acoustic speech spectrogram. Essentially, the primary mechanism of our
proposed method, and what differs from the previously described approaches, is its detailed
slope analysis, making the SpeechBreathingToolbox robust to noise and adapted to the un-
usual profile of speech-related respiration. Moreover, given that inhalation duration, volume,
and kinematic profiles vary between speakers [12], the algorithm flexibly estimates, rather than
hard codes, many of its parameters.

Calibration with the acoustic signal. We have seen that some speakers’ plethysmographic
signals do not conform to typical breathing patterns. One instance is with speakers whose
apparent inhalation ends (i.e., signal peaks) seem to occur after speech has started (Figure 1; see
discussion in [13]). Another issue arises with speakers whose chest movements during speech
exhalation spuriously resemble the shape of an inhalation. Hence, we find algorithmic results
are further improved by cross-referencing between the respiratory signal and corresponding
acoustic speech data. Because speech breathing inconsistently registers as an acoustic trace,
and is moreover often associated with ingressive noises, like pops and croaks, a straight-forward
silence detection approach is not feasible. We therefore implement a method of multi-threshold
silence detection; specifically, brief but loud sounds (e.g., a throat click), are allowed, as well
as longer but low-intensity broadband sounds (e.g., the sound of the breath itself).

Evaluation. We evaluate SpeechBreathingToolbox by comparing its results with human
manual annotation, as well as automatic annotations produced by the peak-finding algorithm
used in RespInPeace, a speech breathing analysis tool developed for Python [14]. In the paper
introducing RespInPeace, the authors report that 12.6% of breath events (from a corpus of 9 x
20-minute, three-party conversations) required manual adjustment [14]. Error rates in excess of
10% may be unacceptable when correcting a larger data set, however. Moreover, the temporal
precision of this method is unclear. Thus, as it is intended to improve upon signal-crossing tech-
niques for breath detection (e.g., instants of peak velocity), we use RespInPeace as a helpful

1All functions are packaged and distributed as the SpeechBreathingToolbox with code available for down-
load from https://github.com/alexisdmacintyre/SpeechBreathingToolbox.
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benchmark by which to compare the current method. In the following sections, we describe
the corpus used to evaluate the proposed method, followed by the algorithmic steps in technical
detail.

2 Methods and Materials

2.1 Evaluation Data Set

The SpeechBreathingToolbox is validated using a corpus produced by 10 individual English
speakers (3 male and 7 female, ages 25-50) whose data were not used during the algorithmic
development. The speakers were fitted with two breath belts (MLT1132, ADInstruments, Castle
Hill, Australia) with one positioned at the abdomen and the other at the chest level. A cardioid
dynamic microphone was placed on a stand in front of the speaker’s mouth. The respiratory and
acoustic speech signals were sampled together by the same acquisition device at 20 kHz. For
the current analysis, we used 2 minutes of spontaneous speech and 1 minute 15 seconds of read
speech contributed by each speaker. The spontaneous speech was elicited using text prompts
with familiar, open-ended questions (e.g., "What is your favourite restaurant and why?"), and
the read speech consisted of simplified popular articles that were edited for readability.

2.2 Data Preprocessing

Individual speakers exhibit wide variability in terms of chest and abdominal breathing patterns
[8]. Where both the upper and lower breath belts were found to be in good alignment, the mean
of the two belts was taken. Otherwise, only the single breath belt that most closely corresponded
to the acoustic spectrogram was used. The respiratory signal was downsampled to 1 kHz. For
smoothing and the removal of high frequency noise, a moving mean with a window of 20
milliseconds was found satisfactory. Other authors report band-pass or low-pass filtering the
signal [9, 14]; however, when inspecting the filtered signal, it was determined that these more
transformative methods distorted the signal, as is reported elsewhere [15]. Similarly, to avoid
any unnecessary distortion of the respiratory signal, no baseline drift is subtracted, given this
was not found to be problematic for the proposed method. Finally, the respiratory signal is
re-scaled between [0,1].

2.3 Algorithms

2.3.1 Inhalation Onset and End Detection

1. The algorithm first determines all instances of continuous, positive-going slopes. This is
performed by taking the moving average of the first derivative of the signal from non-
overlapping windows. Transient non-positive segments associated with noise are toler-
ated at this early stage.

2. Preliminary inhalation ends are identified as the maximum value within each distinct
positive slope. The corresponding inhalation onset is chosen as the latest value ≤ the
2.5th percentile of the total peak height, rather than the absolute minimum, which was
found to be less robust.

3. The algorithm then iterates over each candidate inhalation to determine whether the onset
and end of candidate inhalations should be modified. For example, the windowed cu-
mulative percentage of total breath height is used to trim weakly graded segments near
either extreme of the breath (e.g., if the current window reaches less than 6% of the total
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peak height, the onset is moved up to the end of the current window). Another parameter
is the presence of sudden change-points in the signal, like a notch, near the inhalation
end. As ongoing adjustments change local and global statistics–for example, trimming
an inhalation at a signal change point will affect its cumulative height–the script updates
these measures with each iteration.

4. If any of the resultant inhalations occur within overly close proximity (e.g., < 300 ms by
default), they may either be joined together or rejected according to contextual factors,
such as their relative height or prominence.

5. Finally, the remaining inhalations are filtered according to global thresholds, such as min-
imum inhalation volume or inter-breath interval. These parameters can be estimated sta-
tistically (e.g., ≤ IQR below the first quartile of breath slope grades) or set as absolute
values where desired.

2.3.2 Calibration with Acoustic Speech Recording

1. Values in the acoustic speech signal exceeding the upper and lower 10% are capped and
a band pass filter with cutoff 2−1000 Hz is applied to remove signal drift and reduce the
acoustic presence of breathing, a broadband noise.

2. The slow amplitude modulation of the speech signal, the speech envelope, is extracted
using a method described in [16, 17] and sampled at 1 kHz. The envelope is smoothed
using a moving mean. Values exceeding the 97.5th percentile are capped, and the envelope
is re-scaled between [0,1].

3. Soft and hard thresholds are calculated for silent detection as Tsoft and Thard, respec-
tively. Heuristically, we have found good results by dividing the envelope values into 50
quantiles and setting Tsoft as the 24th quantile (e.g., breath sounds), and Thard to the 27th

quantile (e.g., ingressive noise and speech sounds). These thresholds are used to further
simplify the envelope, where values ≤ Tsoft are replaced with 0; values ≥ Tsoft and <

Thard are replaced with Tsoft; and values > Thard are replaced with Thard.

4. For each detected breath event, extract the corresponding thresholded speech envelope. A
decision logic is implemented to accept or reject that breath:

(a) If > 50% of the inhalation coincides with envelope values exceeding Thard, and these
suprathreshold values overlap with the greatest change in the respiratory signal, dis-
card the breath as probable exhalation.

(b) If non-zero speech envelope segments consist of a mix of Tsoft and Thard values,
reject if the mid-section of this segment is mostly Thard. Otherwise, very short (e.g.,
< 45 ms by default) Thard segments associated with clicks or pops are permitted, as
well as continuous Tsoft segments where they are not interspersed with longer Thard

values.

(c) If > 75% of the original total height of the inhalation slope or > 66% of total dura-
tion has been lost after the preceding adjustments, discard that breath event.

5. Otherwise, the remaining inhalation onsets and ends are adjusted when found to overlap
with Thard values in their corresponding speech envelope sections. If the new breath signal
begins later than the original inhalation onset, the new onset will be moved up to the new
local minimum. If the new breath signal ends sooner than the current inhalation end, the
new end will be moved to the new local max.
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Figure 1 – The breath belt signal (black), acoustic speech signal (grey), and inhalation onsets and ends
(green and red, respectively). The shape of the markers indicates their source.

3 Evaluation

To validate the SpeechBreathingToolbox functions described above ("proposed method"),
the output was compared with manual annotations made independently by the authors in Praat
[18] using the respiratory and acoustic speech signal, thus similar to the script. As a benchmark
comparison with an automated technique from the literature, we report results from the peak-
finding algorithm implemented by RespInPeace ("standard method") [14]. We generated these
annotations in MATLAB following the procedure defined in [14] as closely as possible.

3.1 Measures

We evaluate performance using the signal detection metrics precision and recall, which char-
acterise the proportion of false positives (i.e., returned inhalations that were absent in ground
truth) and false negatives (i.e., inhalations present in ground truth that were not returned) relative
to true positives, respectively. Precision and recall can be combined by taking their harmonic
mean, resulting in the F1 score. We report mean precision, recall, and F1 across trials.

To empirically determine the temporal precision of each method, we paired each returned
annotation across the three sources (human, proposed method, standard method) and calculated
the Euclidean distance between paired time points (e.g., Onsethuman to Onsetproposed method) in
milliseconds. Descriptive statistics are first calculated on a trial-by-trial basis, and then aggre-
gated by taking the mean across trials.

3.2 Results

Signal Detection. The proposed method SpeechBreathingToolbox returned favourable re-
sults, with F1 of 0.95, meaning that the automatic technique detected the presence or absence
of breath events similarly to human annotators. Moreover, precision and recall did not differ
across speaking conditions (Table 1). The standard method fared, by comparison, poorly with
spontaneous speech (F1 0.87) in comparison to reading (F1 0.92). For reference, the over-
all inter-human annotator F1 was 0.98, with little difference between reading or spontaneous
speech.
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Table 1 – Comparison of signal detection metrics between automatic methods.

Proposed Method Standard Method

Precision Recall F1 Score Precision Recall F1 Score
Spontaneous 0.96 0.95 0.96 0.86 0.9 0.87

Reading 0.94 0.97 0.95 0.96 0.89 0.92
Overall 0.95 0.96 0.95 0.93 0.89 0.91

Temporal precision. We turn now to error, which describes Euclidean distance, in mil-
liseconds, between automatic results and human annotations (Table 2, Fig. 2). Overall, we find
that the proposed method returns median errors of 39.33 ms (IQR 41.32 ms) for inhalation on-
sets and 36.08 ms (IQR 39.13 ms) for ends. By comparison, the median inter-human annotator
error is 25.62 ms (IQR 29.03) for inhalation onsets and 22.73 ms (IQR 23.62 ms) for ends. This
suggests a loss ≃ 20 ms in temporal accuracy when automatic methods are employed; how-
ever, the median error for the standard method is 266.21 ms (IQR 675.80 ms) for inhalation
onsets and 69.39 ms (IQR 87.09 ms) for ends. Hence, the proposed method yields a substantial
improvement on the scale of tens of milliseconds, permitting a reasonable trade-off between
human labour and temporal precision. Incidentally, we note that inhalation onsets are associ-
ated with larger errors than ends, and this applies to inter-annotator error as well as automatic
method-human error. In particular, the standard method median error for inhalation onsets in
spontaneous speech is 274.78 ms (IQR 758.85 ms).

Table 2 – Comparison of error (milliseconds) between proposed and standard methods with human-
produced manual annotations. Measures are aggregated by taking the mean across trials.

Proposed Method Error (ms)

Spontaneous

Median IQR Mean SD Min. Max.
Breath Onset 25.43 37.06 37.10 36.90 4.80 113.13
Breath End 20.53 45.88 41.24 54.63 4.40 162.43

Reading

Median IQR Mean SD Min. Max.
Breath Onset 27.68 42.74 47.64 57.43 5.95 183.4
Breath End 15.83 21.36 35.97 56.87 4.70 184.25

Standard Method Error (ms)

Spontaneous

Median IQR Mean SD Min. Max.
Breath Onset 274.78 758.85 535.30 690.43 24.73 1933.37
Breath End 80.98 88.45 113.12 120.61 21.73 393.2

Reading

Median IQR Mean SD Min. Max.
Breath Onset 253.35 551.21 531.22 706.63 56.00 2127.4
Breath End 52.00 85.05 87.26 95.38 20.15 294.75

4 Discussion and Conclusion

To annotate the speech breathing time series, an effective and trustworthy automatic method
should balance signal detection with good temporal precision. Based on our evaluation, we
find that the proposed method, SpeechBreathingToolbox, offers good improvement over the
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Figure 2 – Comparison of the distributions and Tukey boxplots of individual annotation errors for
inhalation onsets (left panel) and ends (right panel).

standard method on both fronts. Importantly, we found no evidence for a qualitative difference
on the basis of speaking style, meaning that even less controlled, spontaneous speech can be
used without concern for additional noise. Although we performed no corrective procedures on
the data, the performance could be further improved using minimal post-processing steps (e.g.,
removing obvious outliers).

Unlike RespInPeace, SpeechBreathingToolbox currently does not address breath holds
or pauses [14], wherein an individual halts speech but does not inhale–this functionality should
be implemented in future versions of the toolbox. Similarly, we used breath belt data that were
not calibrated using measures of lung volume or breathing range, and therefore do not address
spatial aspects of breathing movements in detail. Researchers interested in respiratory capacity
may wish to calibrate the breath belt signal with equipment such as a mask-type spirometer.

In conclusion, our objective was to develop a fast, effective, and easy to use package of
scripts, enabling researchers to sift through great amounts of speech breathing data. In com-
paring the output of SpeechBreathingToolbox to human annotation, we find high agreement
concerning how many and when, precisely, inhalation events happen during speech produc-
tion. Overall, the proposed method seems to produce reliable, objective annotations that are
comparable to those made by human annotators, but with a fraction of the time and labour.
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