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@ Introduction

* inhalations differ from regular speech: no
phonation, ingressive airflow

* inhalations showed similarities to some
vowel formants and /k/-aspirations [1]

e acoustics of breath noises in speech under-
researched

* how do in- and exhalation noises differ?
details unknown so far

* no main effect of direction for any of the 4
statistical models
* post-hoc comparisons for significant
direction contrasts by VT configuration:
* DCTO: /i, ¢, |, s/
* DCT1:/[, s/
 DCT2:/[/

Discussion & Conclusion

What is the effect of reversing airflow

direction on acoustic characteristics in the drection — anstston — s * no general effect of reversing airflow direction
same vocal tract (VT)? fail i fu/ /o X /ol y s/ on spectrum, but specfic for VT config

» differences mostly found for sibilants (esp. /[/)
@ Methods \ J\Jx and for mean amplitude in configurations

e 3D-printed vocal tract models (m, f) | involving high tongue positions
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producing 8 sounds /a:, i;, u;, 9, X, ¢, [, s/ [2] %ﬂm %  amplitude higher in 4 exhalations:
* imitate in- and exhalations: static airflow | M w concentrated airstream hitting incisors

* speakers/models differ for some VT config.

* implications for acoustic characterization of
real inhalations: if VT relatively open there,
direction not a problem for comparison with
real speech sounds

through glottis in 2 directions; 3 power

levels; 10 s; recorded with microphone
 power spectral density for all 96 noises
 compared via Discrete Cosine Transform \\N J

(DCT) 0-3 [3] JL\W
 1me4 [4] for model fitting; emmeans [5] for § YV\J W

pairwise post-hoc comparisons
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